
Javelina:
An Advanced Code Coverage Package

Version 2.0

David R. “Chip” Kent IV
Los Alamos National Laboratory

October 6, 2005

UNCLASSIFIED: LA-UR-05-7792

CONTENTS CONTENTS

Contents

1 Introduction 4

2 Data Acquisition 4
2.1 Javelina/Dyninst . 5
2.2 Javelina/Atom . 6

3 Data Manipulation 7
3.1 Example 1: allblockstolines.py 7
3.2 Example 2: allblockstolinesfast.py 8
3.3 Example 3: oralllines.py . 9
3.4 Example 4: oralllinesfast.py 9
3.5 Example 5: allblockstoreport.py 10
3.6 Example 6: allblockstoreportfast.py 10
3.7 Example 7: alllinestoreport.py 11
3.8 Example 8: alllinestoreportfast.py 11
3.9 Example 9: subtract2lines.py 12

4 Data Visualization 13

5 Javelina Python Application Program Interface (API) 15
5.1 Modules and Packages . 15

5.1.1 ReportSorting . 15
5.2 Classes . 15

5.2.1 Coverage . 16
5.2.2 CoverageSummary . 18
5.2.3 ExecutableStructure 19
5.2.4 ExecutionResult . 19

5.3 Functions . 19
5.3.1 AND . 19
5.3.2 AND DESTROY . 20
5.3.3 NOT . 20
5.3.4 NOT DESTROY . 20
5.3.5 OR . 21
5.3.6 OR DESTROY . 21
5.3.7 REPORT . 21
5.3.8 SUBTRACT . 22

UNCLASSIFIED: LA-UR-05-7792 2

CONTENTS CONTENTS

5.3.9 blockToLine . 22
5.3.10 blockToLineFast . 22
5.3.11 loadBlock . 23
5.3.12 loadBlockFast . 23
5.3.13 loadLine . 23
5.3.14 loadStructure . 24
5.3.15 summary . 24

6 Installation 25
6.1 Data Acquisition . 25

6.1.1 Javelina/Dyninst . 25
6.1.2 Javelina/Atom . 27

6.2 Manipulation/Visualization 27

7 Usage Notes (READ THIS!!) 28
7.1 Javelina/Dyninst . 28

7.1.1 All Languages . 28
7.2 Javelina/Atom . 29

7.2.1 All Languages . 29
7.2.2 C/C++ . 29
7.2.3 Fortran . 30

7.3 Javelina Python Libraries . 31
7.4 Javelina GUI . 31

8 Known Bugs 31
8.1 Javelina/Dyninst . 31

8.1.1 All Languages . 31
8.2 Javelina/Atom . 32

8.2.1 Fortran . 32
8.2.2 C . 32
8.2.3 C++ . 32

8.3 Javelina Python Libraries . 33
8.4 Javelina GUI . 33

9 Javelina Open Source Project 33

10 Help!! 34

A License 34

UNCLASSIFIED: LA-UR-05-7792 3

2 DATA ACQUISITION

1 Introduction

Javelina is an advanced code coverage package. It allows users to:

• Acquire raw block-coverage data from an executable

• Convert block-coverage data to line-coverage data

• Perform advanced manipulations on line-coverage data

• Generate reports summarizing line-coverage results

• View source code with unexecuted lines highlighted

With Javelina, it is possible to combine coverage data from multiple exe-
cutions and/or multiple processors during a single execution (in the cases of
a parallel calculation). Using this data aggregation, the results of many test
cases can be combined into a single result. Additionally, the results from
many production-size parallel calculations can be aggregated into a single
result showing what parts of the executable were used during actual calcu-
lations. This provides insight into what code is dead and can be removed.

Using Javelina’s advanced functionality, it is possible to compare the lines
executed in actual production calculations with the lines covered during tests.
This can be very insightful in very large programs where only a small fraction
of the code is ever executed during real runs.

The code-coverage viewer lets users quickly identify code which was never
executed so that new test cases can be generated or the code can be classified
as dead and removed.

For instructions in installing Javelina, see Section 6.

2 Data Acquisition

Javelina acquires coverage data using a variety of tools. Each tool supports
a different set of platforms and has its own advantages and disadvantages.
These tools are covered in the following subsections.

The Javelina/Dyninst data acquisition tool generates one type of file.
This file indicates whether each analyzed line was or was not executed.

The Javelina/Atom data acquisition tool generates two types of files.
One describes the structure of the binary and relates blocks to source-code

UNCLASSIFIED: LA-UR-05-7792 4

2.1 Javelina/Dyninst 2 DATA ACQUISITION

line numbers. The other indicates which blocks were executed during a
run. These two files can be combined into the same line coverage data as
Javelina/Dyninst produces using the blockToLine function in the Javelina
Python library.

2.1 Javelina/Dyninst

Javelina’s Dyninst [3] based coverage tool inserts instructions into the binary
being analyzed that record which blocks were executed during a run. Though
Javelina/Dyninst records instruction-block coverage, only source-line cover-
age data is returned. This conversion is done on-the-fly as the coverage
data is being collected and is equivalent to processing the data returned by
Javelina’s Atom tool using the blockToLine function.

All instrumentation done by Javelina’s Dyninst tool is done using dy-
namic instrumentation. Dynamic instrumentation allows a binary’s instruc-
tions to be edited after it is loaded into RAM. Javelina’s Dyninst tool loads
the analyzed binary into RAM and then inserts the appropriate instrumen-
tion into the specified instruction blocks. After a block has been executed,
its instrumentation is removed to minimize Javelina’s overhead.

The first step in using Javelina’s Dyninst tool is to compile the source code
being analyzed with debugging information. The quality of Javelina’s results
depend on the quality of debugging information output by the compiler. For
most compilers, adding “-g” to the command line will produce sufficient de-
bugging information. Many compilers have other flags which can produce
better quality debugging information. Many modern compilers can produce
debugging information when optimization is used. See your compiler’s doc-
umentation for further details. When using GCC [4] compilers, “-gdwarf-2”
is reported to provide the best debugging information for Javelina’s Dyninst
tool.

Once an appropriate binary has been built, coverage data on the exe-
cutable can be collected (hello.x in this example).

javelina hello.x

Running javelina produces a new file.

ls

hello.c

hello.x

javelina.myhost.12345.xml

UNCLASSIFIED: LA-UR-05-7792 5

2.2 Javelina/Atom 2 DATA ACQUISITION

The new file contains the coverage data for hello.x execution on host myhost
as PID 12345.

To collect data on specific shared libraries used by the executable, use
the --lib command line argument.

javelina --lib libmylibrary.so hello.x

For a list of all possible command line arguments for Javelina’s Dyninst tool,
have the tool output its help page.

javelina --help

For MPI programs, coverage data is collected as in the following example
for hellompi.x.

mpirun -np 4 javelina hellompi.x

Some MPI implementations have problems launching processes this way. See
Section 8.1 for details.

2.2 Javelina/Atom

Javelina’s Atom [1] tool inserts instructions into the binary being analyzed
that record which blocks were executed during a run. It additionally gen-
erates a file indicating which source lines are associated with each block. If
this file does not link blocks to source lines, recompile the program with
debugging enabled.

The first step in using Javelina’s Atom tool is to instrument the binary
being analyzed (hello.x in this example).

atom hello.x -tool javelina

All of the statically loaded shared libraries used by the binary can also be
analyzed simply by adding -all to the Atom command line. Running Atom
produces a few new files.

ls

hello.c

hello.x

hello.x.javelina

javelina.structure.60a5d9c774e12d828dab9e60ed0f84366673af03.xml

UNCLASSIFIED: LA-UR-05-7792 6

3 DATA MANIPULATION

hello.x.javelina is the instrumented binary, and javelina.structure.<s>.xml

is the file relating the binary’s blocks to source-code line numbers. <s> is
the freely available SHA-1 cryptographic hash [2] (checksum) of the struc-
ture file. This aids in rapidly locating the structure file which goes with a
particular executable.

Once atom has been run on the executable, the raw block-coverage data
is generated by running the instrumented binary.

./hello.x.javelina

The block-coverage data is contained in the javelina.block.<m>.<pid>.xml
files, where <m> is the machine name and <pid> is the process ID that gener-
ated the file. The javelina.block.*.*.xml and javelina.structure.*.xml

files are used by Javelina’s data manipulation tools.

3 Data Manipulation

Advanced code-coverage data manipulation is done using Python [8] scripts.
Python is an interpreted, interactive, object-oriented programming language.
It is often compared to Tcl, Perl, Scheme, or Java. Python provides numerous
libraries and is portable to many architectures. Those not familiar with
Python should consult a good reference such as:

• http://www.python.org

• Learning Python by Lutz and Ascher

• Python Essential Reference by Beazley

• Python Pocket Reference by Lutz

Javelina provides libraries to parse, save, and manipulate code-coverage
data. This application program interface (API) is covered in Section 5. Ex-
ample scripts can be found in the
${JAVELINAROOT}/python-examples directory.

3.1 Example 1: allblockstolines.py

This example script converts all of the block coverage data in the current
directory into line coverage data. It assumes that all block files in the current

UNCLASSIFIED: LA-UR-05-7792 7

3.2 Example 2: allblockstolinesfast.py 3 DATA MANIPULATION

directory use the same structure file, and that structure file is the only one
in the directory. Because this example uses block and structure files, it only
applies to Javelina/Atom.

from javelina import loadStructure, loadBlock, blockToLine

import string

import glob

blockFiles = glob.glob("javelina.block.*.xml")

structureFile = glob.glob("javelina.structure.*.xml")[0]

for blockFile in blockFiles:

lines = blockToLine(structureFile,blockFile)

lineFile = string.replace(blockFile,"block","line")

lines.save(lineFile)

3.2 Example 2: allblockstolinesfast.py

This example script converts all of the block coverage data in the current
directory into line coverage data. It assumes that all block files in the current
directory use the same structure file, and that structure file is the only one
in the directory. This version is optimized for speed. The API used for
optimization may change in future versions of Javelina. Because this example
uses block and structure files, it only applies to Javelina/Atom.

from javelina import loadStructure, loadBlockFast, blockToLineFast

import string

import glob

blockFiles = glob.glob("javelina.block.*.xml")

structureFile = glob.glob("javelina.structure.*.xml")[0]

structure = loadStructure(structureFile)

for blockFile in blockFiles:

lines = blockToLineFast(structure,blockFile)

lineFile = string.replace(blockFile,"block","line")

lines.save(lineFile)

UNCLASSIFIED: LA-UR-05-7792 8

3.3 Example 3: oralllines.py 3 DATA MANIPULATION

3.3 Example 3: oralllines.py

This example script calculates the logical OR of all the line coverage files in
the current directory and saves the result as orall.xml.

from javelina import loadLine, OR

import string

import glob

lineFiles = glob.glob("javelina.line.*.xml")

outputFile = "orall.xml"

result = loadLine(lineFiles[0])

for lineFile in lineFiles:

result = OR(result,lineFile)

result.save(outputFile)

3.4 Example 4: oralllinesfast.py

This example script calculates the logical OR of all the line coverage files
in the current directory and saves the result as orall.xml. This version is
optimized for speed. The API used for optimization may change in future
versions of Javelina.

from javelina import loadLine, OR_DESTROY

import string

import glob

lineFiles = glob.glob("javelina.line.*.xml")

outputFile = "orall.xml"

result = loadLine(lineFiles[0])

for lineFile in lineFiles[1:]:

result = OR_DESTROY(result,lineFile)

result.save(outputFile)

UNCLASSIFIED: LA-UR-05-7792 9

3.5 Example 5: allblockstoreport.py 3 DATA MANIPULATION

3.5 Example 5: allblockstoreport.py

The following example takes all of the block-coverage files from the current
directory, combines them, and produces two reports. One report is sorted
based upon the percent coverage, and the other is sorted based upon the
number of unexecuted lines. Because this example uses block and structure
files, it only applies to Javelina/Atom.

from javelina import *

import string

import glob

blockFiles = glob.glob("javelina.block.*.xml")

structureFile = glob.glob("javelina.structure.*.xml")[0]

data = blockToLine(structureFile,blockFiles[0])

for blockFile in blockFiles:

line = blockToLine(structureFile,blockFile)

data = OR(data,line)

REPORT(data,ReportSorting.line,"report.line.txt")

REPORT(data,ReportSorting.percent,"report.percent.txt")

3.6 Example 6: allblockstoreportfast.py

The following example takes all of the block-coverage files from the current
directory, combines them, and produces two reports. One report is sorted
based upon the percent coverage, and the other is sorted based upon the
number of unexecuted lines. This version is optimized for speed. The API
used for optimization may change in future versions of Javelina. Because this
example uses block and structure files, it only applies to Javelina/Atom.

from javelina import *

import string

import glob

blockFiles = glob.glob("javelina.block.*.xml")

structureFile = glob.glob("javelina.structure.*.xml")[0]

UNCLASSIFIED: LA-UR-05-7792 10

3.7 Example 7: alllinestoreport.py 3 DATA MANIPULATION

structure = loadStructure(structureFile)

data = blockToLineFast(structure,blockFiles[0])

for blockFile in blockFiles[1:]:

line = blockToLineFast(structure,blockFile)

data = OR_DESTROY(data,line)

REPORT(data,ReportSorting.line,"report.line.txt")

REPORT(data,ReportSorting.percent,"report.percent.txt")

3.7 Example 7: alllinestoreport.py

The following example script aggrigates all of the line coverage data in the
current directory using an OR operation. Summary reports of this data are
then produced. One report is sorted by unexecuted lines and the other by
percent coverage. It assumes that all block files in the current directory use
the same structure file, and that structure file is the only one in the directory.

from javelina import loadLine, OR, REPORT, ReportSorting

import string

import glob

lineFiles = glob.glob("javelina.line.*.xml")

data = loadLine(lineFiles[0])

for lineFile in lineFiles:

data = OR(data,lineFile)

REPORT(data,ReportSorting.line,"report.line.txt")

REPORT(data,ReportSorting.percent,"report.percent.txt")

3.8 Example 8: alllinestoreportfast.py

The following example script aggrigates all of the line coverage data in the
current directory using an OR operation. Summary reports of this data are

UNCLASSIFIED: LA-UR-05-7792 11

3.9 Example 9: subtract2lines.py 3 DATA MANIPULATION

then produced. One report is sorted by unexecuted lines and the other by
percent coverage. It assumes that all block files in the current directory use
the same structure file, and that structure file is the only one in the directory.
This version is optimized for speed. The API used for optimization may
change in future versions of Javelina.

from javelina import loadLine, OR_DESTROY, REPORT, ReportSorting

import string

import glob

lineFiles = glob.glob("javelina.line.*.xml")

data = loadLine(lineFiles[0])

for lineFile in lineFiles[1:]:

data = OR_DESTROY(data,lineFile)

REPORT(data,ReportSorting.line,"report.line.txt")

REPORT(data,ReportSorting.percent,"report.percent.txt")

3.9 Example 9: subtract2lines.py

The following example script applies the SUBTRACT operation to two line
coverage files specified on the command line. The result is then saved, and re-
ports are generated. The SUBTRACT operation extracts the lines executed
in the first line coverage file, marks these lines as executed (unexecuted) if
they are executed (unexecuted) in the second line coverage file, and returns
the resulting line coverage object. This operator is useful in determining
which lines executed by a user were tested. In this case, the first file would
be the coverage data for the user applications, and the second file would be
the coverage data for the test cases.

from javelina import SUBTRACT, REPORT, ReportSorting

import sys

if len(sys.argv) != 3:

print "Usage: %s <userdata.xml> <testdata.xml>"%(sys.argv[0])

sys.exit(1)

UNCLASSIFIED: LA-UR-05-7792 12

4 DATA VISUALIZATION

userdata = sys.argv[1]

testdata = sys.argv[2]

data = SUBTRACT(userdata,testdata)

data.save("subtract_result.xml")

REPORT(data,ReportSorting.line,"subtract_report.line.txt")

REPORT(data,ReportSorting.percent,"subtract_report.percent.txt")

4 Data Visualization

Code-coverage data and source code can be viewed using javelinagui. To
use this tool, cd to the base directory where the source code to be analyzed
is stored. When searching for a file, the name in the lines file will be opened
if it exists. This could be an absolute path, a relative path, or a file name in
the current directory. If the file does not exist in this location, all directories
within the current directory will be searched for the file. Once in the source
code directory, run javelinagui with a line coverage file as input.

cd /directory/with/source/code

javelinagui path/to/linecoveragedata.xml

UNCLASSIFIED: LA-UR-05-7792 13

4 DATA VISUALIZATION

The GUI is very simple and intuitive to use. The files listed on the left
are sorted by the number of lines marked as unexecuted in the line coverage
input file. These lines are highlighted in yellow.

UNCLASSIFIED: LA-UR-05-7792 14

5 JAVELINA PYTHON APPLICATION PROGRAM INTERFACE
(API)

5 Javelina Python Application Program In-

terface (API)

Javelina provides a Python [8] module to load, save, and manipulate coverage
data. This module can be accessed through either “import javelina” or
“from javelina import *” in Python. This section describes the details of
the application program interface (API).

In Python, it is possible to obtain this API documentation using the help
function. For example:

import javelina

help(javelina.loadBlock)

5.1 Modules and Packages

This section covers the modules and packages available through the Javelina
Application Program Interface (API).

5.1.1 ReportSorting

Functions used to sort coverage reports.

FUNCTIONS

line(a, b)

Sorting function based on the number of unexecuted

lines.

percent(a, b)

Sorting function based on the percentage of unexecuted

lines.

5.2 Classes

This section covers the classes available through the Javelina Application
Program Interface (API).

UNCLASSIFIED: LA-UR-05-7792 15

5.2 Classes
5 JAVELINA PYTHON APPLICATION PROGRAM INTERFACE

(API)

5.2.1 Coverage

class Coverage

| Coverage information for a group of images. An image is an

| executable or a shared library.

|

| __init__(self, executableStructure=None, executionResult=None)

| Creates a new instance of this class.

|

| executableStructure -- ExecutableStructure object

| describing the executable

| executionResult -- ExecutionResult object

| describing which blocks were

| executed

|

| AND(self, other)

| Performs a logical AND operation on the data in two

| objects and returns the result. A line will be marked

| as executed if both objects mark the line as having

| been executed. AND does not modify its arguments.

| For a faster version of AND which destroys the

| arguments, see AND_DESTROY.

|

| other -- object to AND with this object

| return -- logical AND of the two objects

|

| AND_DESTROY(self, other)

| Performs a logical AND operation on the data in two

| objects and returns the result. A line will be marked

| as executed if both objects mark the line as having

| been executed. AND_DESTROY modifies its arguments.

| For a slower version of AND_DESTROY which preserves

| the arguments, see AND.

|

| other -- object to AND with this object

| return -- logical AND of the two objects

|

| NOT(self)

UNCLASSIFIED: LA-UR-05-7792 16

5.2 Classes
5 JAVELINA PYTHON APPLICATION PROGRAM INTERFACE

(API)

| Performs a logical NOT operation on the data in this

| object and returns the result. A line will be marked

| as executed if it was not executed and vice versa.

| NOT does not modify its arguments. For a faster

| version of NOT which destroys the arguments, see

| NOT_DESTROY.

|

| return -- logical NOT of the this object

|

| NOT_DESTROY(self)

| Performs a logical NOT operation on the data in this

| object and returns the result. A line will be marked

| as executed if it was not executed and vice versa.

| NOT_DESTROY modifies its arguments. For a slower

| version of NOT_DESTROY which preserves the arguments,

| see NOT.

|

| return -- logical NOT of the this object

|

| OR(self, other)

| Performs a logical OR operation on the data in two

| objects and returns the result. A line will be marked

| as executed if either object marks the line as having

| been executed. OR does not modify its arguments. For

| a faster version of OR which destroys the arguments,

| see OR_DESTROY.

|

| other -- object to OR with this object

| return -- logical OR of the two objects

|

| OR_DESTROY(self, other)

| Performs a logical OR operation on the data in two

| objects and returns the result. A line will be marked

| as executed if either object marks the line as having

| been executed. OR_DESTROY modifies the input

| arguments. For a slower version of OR_DESTROY which

| preserves the arguments, see OR.

|

UNCLASSIFIED: LA-UR-05-7792 17

5.2 Classes
5 JAVELINA PYTHON APPLICATION PROGRAM INTERFACE

(API)

| other -- object to OR with this object

| return -- logical OR of the two objects

|

| SUBTRACT(self, other)

| Extracts the lines of this object which have been

| executed, marks these lines as executed if they are

| executed in the other object, and returns the result.

| This operator is useful in determining which lines

| executed by a user were tested.

|

| other -- see description above

| return -- see description above

|

| addImage(self, image)

| Adds an image to this object.

|

| image -- image added to this object

|

| save(self, fileName)

| Writes the coverage data out as an XML file.

|

| fileName -- file where the data will be written

|

| toXML(self, writer)

| Writes the coverage data out to a writer as XML.

|

| writer -- writer object to write the data to

5.2.2 CoverageSummary

class CoverageSummary

| Summary of the coverage information contained in a

| Coverage object.

|

| __init__(self, type, name)

| Creates a new instance of this class and initializes

| it.

|

UNCLASSIFIED: LA-UR-05-7792 18

5.3 Functions
5 JAVELINA PYTHON APPLICATION PROGRAM INTERFACE

(API)

| type -- type of this section of code (e.g. file,

| procedure)

| name -- name for this section of code

5.2.3 ExecutableStructure

class ExecutableStructure

| Information on the structure of the analyzed executable.

|

| __init__(self)

| Creates a new instance of this class.

5.2.4 ExecutionResult

class ExecutionResult

| Information on which blocks were and were not executed.

|

| __init__(self, blockfile)

| Creates a new ExecutionResult.

|

| blockfile -- signature of the static analysis file

| which goes with this data.

5.3 Functions

This section covers the functions available through the Javelina Application
Program Interface (API). These functions are used to load instances of the
Javelina classes from files and are used to manipulate the data.

5.3.1 AND

AND(line1, line2)

Performs a logical AND operation on two line covergae

objects or files and returns the resulting line coverage

object. A line will be marked as executed if both object

marks the line as having been executed. AND does not

modify its arguments. For a faster version of AND which

destroys the arguments, see AND_DESTROY.

UNCLASSIFIED: LA-UR-05-7792 19

5.3 Functions
5 JAVELINA PYTHON APPLICATION PROGRAM INTERFACE

(API)

line1 -- line coverage object or data file

line2 -- line coverage object or data file

return -- line coverage object

5.3.2 AND DESTROY

AND_DESTROY(line1, line2)

Performs a logical AND operation on two line coverage

objects or files and returns the resulting line coverage

object. A line will be marked as executed if both object

mark the line as having been executed. AND_DESTROY

modifies its arguments. For a slower version of

AND_DESTROY which preserves the arguments, see AND.

line1 -- line coverage object (not a data file)

line2 -- line coverage object or data file

return -- line coverage object

5.3.3 NOT

NOT(line)

Performs a logical NOT operation on a line coverage

object or file and returns the resulting line coverage

object. A line will be marked as executed if it was not

executed and vice versa. NOT does not modify its

arguments. For a faster version of NOT which destroys the

arguments, see NOT_DESTROY.

line -- line coverage object or data file

return -- line covearge object

5.3.4 NOT DESTROY

NOT_DESTROY(line)

Performs a logical NOT operation on a line coverage

object and returns the resulting line coverage object. A

line will be marked as executed if it was not executed and

vice versa. NOT_DESTROY modifies its arguments. For a

slower version of NOT_DESTROY which preserves the

UNCLASSIFIED: LA-UR-05-7792 20

5.3 Functions
5 JAVELINA PYTHON APPLICATION PROGRAM INTERFACE

(API)

arguments, see NOT.

line -- line coverage object (not a data file)

return -- line coverage object

5.3.5 OR

OR(line1, line2)

Performs a logical OR operation on two line coverage

objects or files and returns the resulting line coverage

object. A line will be marked as execuited if either

object marks the line as having been executed. OR does

not modify its arguments. For a faster version of OR

which destroys the arguments, see OR_DESTROY.

line1 -- line coverage object or data file

line2 -- line coverage object or data file

return -- line coverage object

5.3.6 OR DESTROY

OR_DESTROY(line1, line2)

Performs a logical OR operation on two line coverage

objects or files and returns the resulting line coverage

object. A line will be marked as executed if either object

marks the line as having been executed. OR_DESTROY

modifies the input arguments. For a slower version of

OR_DESTROY which preserves the arguments, see OR.

line1 -- line coverage object (not a data file)

line2 -- line coverage object or data file

return -- line coverage object

5.3.7 REPORT

REPORT(data, sorting, outfile)

Generates a coverage summary report from either a

summary data object, a line coverage object, or a file

containing line coverage data. The report is sorted

UNCLASSIFIED: LA-UR-05-7792 21

5.3 Functions
5 JAVELINA PYTHON APPLICATION PROGRAM INTERFACE

(API)

according to the given criteria.

data -- a summary data object, a line coverage object,

or a file containing line coverage data

sorting -- a sorting function

outfile -- output file where the report will be stored

5.3.8 SUBTRACT

SUBTRACT(line1, line2)

Extracts the lines of the line1 line coverage object or

data file which have been executed, marks these lines as

executed if they are executed in the line2 line coverage

object or datafile, and returns the resulting line

coverage object. This operator is useful in determining

which lines executed by a user were tested.

line1 -- line coverage object or data file

line2 -- line coverage object or data file

return -- line coverage object

5.3.9 blockToLine

blockToLine(structure, block)

Takes a structure object or datafile and a block

coverage object or datafile and returns a line coverage

object. This function uses a strict XML parser so it very

robust, though slow. For a fast and less robust parser,

see blockToLineFast.

structure -- structure object or datafile

block -- block coverage object or datafile

return -- line coverage object

5.3.10 blockToLineFast

blockToLineFast(structure, block)

Takes a structure object or datafile and a block coverage

object or datafile and returns a line coverage object.

UNCLASSIFIED: LA-UR-05-7792 22

5.3 Functions
5 JAVELINA PYTHON APPLICATION PROGRAM INTERFACE

(API)

This function does not use a strict XML parser so it may

be confused if the data file output by Javelina has been

modified or is from a different version of Javelina. This

is a tradeoff for faster parsing speeds. For a strict,

safe, and slow parser, use blockToLine. For a fast and

less robust parser, use blockToLineFast.

structure -- structure object or datafile

block -- block coverage object or datafile

return -- line coverage object

5.3.11 loadBlock

loadBlock(file)

Loads the block coverage for an execution from an XML

file. This function is a strict XML parser so it very

robust, though slow. For a fast and less robust parser,

see loadBlockFast.

file -- file containing the block coverage data

return -- block coverage information for the execution

5.3.12 loadBlockFast

loadBlockFast(file)

Loads the block coverage for an execution from an XML file.

This function is not strict XML parser so it may be confused

if the data file output by Javelina has been modified or is

from a different version of Javelina. This is a tradeoff for

faster parsing speeds. For a strict, safe, and slow parser,

use loadBlock. For a fast and less robust parser, use

loadBlockFast.

file -- file containing the block coverage data

return -- block coverage information for the execution

5.3.13 loadLine

loadLine(file)

UNCLASSIFIED: LA-UR-05-7792 23

5.3 Functions
5 JAVELINA PYTHON APPLICATION PROGRAM INTERFACE

(API)

Loads line coverage data from an XML file.

file -- file containing the line coverage data

return -- line coverage data

5.3.14 loadStructure

loadStructure(file)

Loads the structure of an executable from an XML file.

file -- file containing the executable structure

return -- structure of the executable

5.3.15 summary

summary(coverage)

Generates a coverage summary for the given line coverage

object or data file.

coverage -- line coverage object or data file.

UNCLASSIFIED: LA-UR-05-7792 24

6 INSTALLATION

6 Installation

Once the Javelina distribution file has been downloaded, unzip it into the
directory where it will be installed.

cp javelina-<version>.tar.gz /directory/to/install/javelina

cd /directory/to/install/javelina

tar -zxvf javelina-<version>.tar.gz

Now that Javelina is installed, the JAVELINAROOT environment variable
must be set:

setenv JAVELINAROOT /directory/to/install/javelina

or

export JAVELINAROOT=/directory/to/install/javelina

Once JAVELINAROOT is set, follow the instructions in the following subsec-
tions to complete the setup. To ease setup, sourceme.csh and sourceme.sh

are provided. Edit these files and then source them to setup the proper
environment variables for Javelina. For csh or tcsh use:

source ${JAVELINAROOT}/sourceme.csh

and for bash use:

source ${JAVELINAROOT}/sourceme.sh

6.1 Data Acquisition

Javelina’s data acquisition functionality can be used without installing the
manipulation/visualization functionality. This is useful when data is acquired
on one machine and analyzed on another.

6.1.1 Javelina/Dyninst

Javelina/Dyninst data acquisition tool is built on the University of Mary-
land and the University of Wisconsin’s Dyninst [3] dynamic instrumenta-
tion library (version ≥ 5.0). Dyninst and Javelina/Dyninst are portable to
most common computing environments. See the Dyninst web site for a cur-
rent list of supported platforms. Dyninst source code and binaries can be

UNCLASSIFIED: LA-UR-05-7792 25

6.1 Data Acquisition 6 INSTALLATION

downloaded from http://www.dyninst.org and used for free within an orga-
nization. Additionally, Javelina/Dyninst requires the Scons [9] build system
(http://www.scons.org) as well as the Boost [10] (version ≥ 1.33) C++ li-
braries (http://www.boost.org).

Once Dyninst, Scons, and Boost have been installed, a few environment
variables must be set:

PLATFORM Specification of what specific architecture and operating sys-
tem is being used. For x86/Linux, this has a value of
i386-unknown-linux-2.4, and for x86 64/Linux, this has a value of
x86 64-unknown-linux2.4. Values for other platforms can be found
by looking in the core/dyninstAPI directory of the Dyninst source
code.

BOOSTROOT Directory where Boost is installed. This directory contains
Boost’s include and lib directories.

BOOSTVERSION Specification of what version of Boost is being used.
For example, if Boost version 1.33 is used, this value should be set to
boost-1 33.

DYNINSTINCLUDE Directory containing the Dyninst include files.
When building Dyninst from source, this directory will be
core/dyninstAPI/h under the Dyninst base directory.

DYNINSTROOT Directory where Dyninst is installed. This directory
contains Dyninst’s bin and lib directories. When building Dyninst
from source, this directory will be ${PLATFORM} under the Dyninst
base directory.

DWARFROOT Directory where Libdwarf is installed. This directory con-
tains Libdwarf’s include and lib directories. This variable is only nec-
essary when using Dyninst on a platform which requires the Libdwarf
libraries.

PATH The search path for executables. To add Javelina/Dyninst to the
standard search path, set PATH to
${JAVELINAROOT}/bin/${PLATFORM}/${BUILDTYPE}:${PATH} where ${BUILDTYPE}
is the type of Javelina build done (see below).

UNCLASSIFIED: LA-UR-05-7792 26

6.2 Manipulation/Visualization 6 INSTALLATION

LD LIBRARY PATH The search path for shared libraries. To add the
Javelina/Dyninst libraries to the standard search path, set
LD LIBRARY PATH to
${JAVELINAROOT}/lib/${PLATFORM}${BUILDTYPE}:${PATH}
where ${BUILDTYPE} is the type of Javelina build done (see below).
Some platforms use different names for LD LIBRARY PATH when either
32- or 64-bit software can be executed by the machine. Use the appro-
priate environment variable in these situations (e.g. LD LIBRARY64 PATH

on IRIX). Linux machines use LD LIBRARY PATH for such machines.

After the appropriate environment variables are set, Javelina/Dyninst
can be built. Simply “cd ${JAVELINAROOT}”, and run “scons”. This builds
the debug version of Javelina by default. An optimized version of Javelina
can be created using “scons release”. Now
Javelina/Dyninst is ready to use.

6.1.2 Javelina/Atom

The Javelina/Atom data acquisition tool is built on HP’s Atom tool. Atom [1]
is proprietary and runs only on the Tru64 OS.

To enable Atom based data acquisition, the ATOMTOOLPATH environment
variable must be set:

setenv ATOMTOOLPATH ${JAVELINAROOT}/atom:${ATOMTOOLPATH}

or

export ATOMTOOLPATH=${JAVELINAROOT}/atom:${ATOMTOOLPATH}

6.2 Manipulation/Visualization

Javelina’s manipulation/visualization functionality can be used without in-
stalling the data acquisition functionality. This is useful when data is ac-
quired on one machine and analyzed on another.

All of Javelina’s data manipulation/visualization functionality is written
in Python. Python version ≥ 2.2 with a SAX XML parser must be in-
stalled. Essentially all recent Python installations satisfy this requirement.
If a SAXReaderNotAvailable exception is raised while using Javelina, then
a Python SAX XML parser is not installed. A new version of the Python
interpreter, which contains this parser, can be downloaded [8] and installed.

UNCLASSIFIED: LA-UR-05-7792 27

7 USAGE NOTES (READ THIS!!)

To use the source-code browser, Python’s Tkinter module must be in-
stalled. If the module is not installed, Python will raise an exception stating
ImportError: No module named tkinter when trying to run the browser.
Tkinter is Python’s official GUI library so it is present in almost all installa-
tions. If Tcl/Tk [11] is installed in a standard location, the Tkinter module
will automatically be created when a new version of the Python interpreter
is built.

Python with a SAX parser and Tkinter is available on Linux, Unix, Mac
OS X, Windows, and probably a few more platforms.

To use Javelina’s data manipulation/visualization functionality, the
PYTHONPATH and PATH environment variables must be set.

setenv PYTHONPATH ${JAVELINAROOT}/python:${PYTHONPATH}

setenv PATH ${JAVELINAROOT}/bin:${PATH}

or

export PYTHONPATH=${JAVELINAROOT}/python:${PYTHONPATH}

export PATH=${JAVELINAROOT}/bin:${PATH}

7 Usage Notes (READ THIS!!)

The section contains notes on using Javelina that every user should read
(especially before submitting a bug report). They should be kept in mind
when interpreting data from Javelina.

7.1 Javelina/Dyninst

7.1.1 All Languages

• Javelina/Dyninst maps instructions to source lines using the debugging
information provided by the compiler. Depending on the debugging
information format, the compiler’s optimization level, the particular
brand compiler, and the version of binutils on the system, the quality
of the line numbers will vary. In general, using no optimizations and
the DWARF2 debugging format will provide the highest quality data.
Experimenting with optimization levels will show how much “fuzzing”
of the coverage information happens. Choose an appropriate balance
of execution speed and coverage quality for your particular application.

UNCLASSIFIED: LA-UR-05-7792 28

7.2 Javelina/Atom 7 USAGE NOTES (READ THIS!!)

For the GCC compilers [4], using “-O0 -gdwarf-2” seems to provide
the highest quality data on Linux systems.

• Testing for Javelina/Dyninst has been most extensive on x86/Linux
and x86 64/Linux systems using the GCC compilers. Expect these
combinations to have the fewest issues.

• Testing for Javelina/Dyninst has been most extensive with Open-MPI [5].
Other MPI implementation may work, but they haven’t been tested.
See Section 8.1 for more information.

• Javelina/Dyninst does not follow the children of fork calls. This can
cause problems in examining the coverage of code that forks. Also, MPI
implementations that use fork to spawn processes (e.g. LA-MPI [6])
likely will not function properly.

• Javelina version 2.0 can not analyze multi-threaded software. This is
a result of a Dyninst limitation. Multi-threaded support will be added
to Javelina as soon as Dyninst can cope with threads.

7.2 Javelina/Atom

7.2.1 All Languages

• In a source file, a single statement can extend to multiple lines. In a
symbol table, it is common for the compiler to associate all lines of a
multi-line statement with only the first source line. For example, the
statement

int i = a + b

+ c

+ d;

may all be assigned to the first line of the statement.

7.2.2 C/C++

• In most contexts “{” and “}” are not executable statements. They
typically do nothing. For example, the “{” and “}” in

UNCLASSIFIED: LA-UR-05-7792 29

7.2 Javelina/Atom 7 USAGE NOTES (READ THIS!!)

int main()

{

return 1;

}

do nothing.

• Statements such as break; and return; may be removed during op-
timization. Because of this, these statements may not be executable
statements in the binary.

• The Alpha cxx compiler does not do a good job of generating symbol
tables when using a high level of optimization. If an optimized binary
is giving unusual data, try turning down the optimization or using a
different compiler.

• When using declaring an STL string (e.g. string temp;) anywhere
in a file, there is a bug in the symbol table generated by the Alpha cxx
compiler. The bug causes line 230 to be marked as executed even when
the line is clearly not executable (e.g. whitespace, comment, etc.). Just
ignore line 230 if you see strange results. This will likely get moved from
bugs to notes with further testing.

7.2.3 Fortran

• Statements such as else and endif are not executable statements in
most contexts. They simply denote the beginning or end of a code
block.

• format statements are sometimes marked as being executable and are
sometimes not. This is an inconsistency in the Alpha Fortran com-
pilers symbol table generation. In addition, format statements which
are marked as executable by the compiler are moved to the start of
the function they appear in during optimization. No matter where a
format statement appears in a function, it will always be marked as
executed if the function is executed. Because of these issues, format
statements should be ignored when viewing coverage data.

UNCLASSIFIED: LA-UR-05-7792 30

7.3 Javelina Python Libraries 8 KNOWN BUGS

• write statements which contain formatting information within them
are split by the Alpha Fortran compilers into a write statement and a
format statement. The format portion of the statement will always be
executed if the function is executed (see above). Because of this, write
statements containing formatting information will always be marked
as executed if the function containing them is called. Because of these
issues, write statements should be ignored when viewing coverage data.

7.3 Javelina Python Libraries

There are currently no usage notes for the Javelina python libraries.

7.4 Javelina GUI

There are currently no usage notes for the Javelina GUI.

8 Known Bugs

Unfortunately Javelina does have a few bugs. If any new bugs are found,
please report them to http://javelina.tigris.org or javelina@lanl.gov.

8.1 Javelina/Dyninst

8.1.1 All Languages

• If Javelina/Dyninst is used on a binary which has no debugging infor-
mation, Javelina/Dyninst may segfault. This is a known problem with
Dyninst which is being corrected.

• Javelina version 2.0 can not analyze multi-threaded software. This is
a result of a Dyninst limitation. Multi-threaded support will be added
to Javelina as soon as Dyninst can cope with threads.

• The prerelease versions of Dyninst 5.0 are extremely slow when associ-
ating line numbers with instructions. Performance is ok when analyz-
ing 10 MB executables, but it has been intolerably slow for 150+ MB
executables.

UNCLASSIFIED: LA-UR-05-7792 31

8.2 Javelina/Atom 8 KNOWN BUGS

• Javelina/Dyninst does not work with LA-MPI [6]. LA-MPI has an
unusual job launching system that uses fork to spawn MPI processes.
Since Javelina/Dyninst does not follow the children of forked processes,
Javelina/Dyninst does not collect coverage information on the MPI pro-
cesses. Development of LA-MPI has stopped, and it is being replaced
by Open-MPI [5]. LA-MPI users should switch to Open-MPI to use
Javelina.

• Javelina/Dyninst does not work with MPICH-P4 [7]. During job launch-
ing, MPICH-P4 appends arguments to the javelina command line.
Javelina/Dyninst does not recognize these extra arguments and shuts
down. It would be possible to have Javelina/Dyninst ignore these ar-
guments. This will be implemented when there is enough demand to
justify the change. MPICH-MPD [7] probably will not suffer from this
problem, but it has not been tested. Open-MPI [5] is the most tested
and recommended MPI implementation.

8.2 Javelina/Atom

8.2.1 Fortran

There are no reported bugs for using Javelina/Atom on binaries created with
Fortran. Only the native Tru64 compilers have been tested.

8.2.2 C

There are no reported bugs for using Javelina/Atom on binaries created with
C. Only the native Tru64 compilers have been tested.

8.2.3 C++

• When Atom is used on an executable generated with g++, every in-
struction is assigned to either source line 0 or 6. This is an Atom bug.
Since HP has discontinued the Tru64 platform, this bug will never be
fixed. Use the Dyninst version of Javelina if this is an issue.

• Templates are listed once for each translation unit (source file with
all necessary files included) they are used in. Every file with includes
template.h will produce its own data for template.h. The data from

UNCLASSIFIED: LA-UR-05-7792 32

8.3 Javelina Python Libraries 9 JAVELINA OPEN SOURCE PROJECT

all translation units needs to be combined into one result, which is
associated with the original header file.

• If the compiler breaks a function into multiple functions during opti-
mization, the data indicating if a line was or was not executed is not
always correct in the GUI. This is a rare event in practice.

• The functions atof, atoi, and exit will often be marked as executed
when they clearly are not. This may be an issue with the symbol
table, preprocessor macros, or inlining. This is seen with the Alpha
cxx compiler.

• When using the Alpha cxx compiler, if(...){...} statements can
behave strangely. In some cases the if statement will be marked as un-
executed and the statements in the {...} will be marked as executed.
Other times some of the statements in the {...} will be marked as
executed and others won’t. Other times, the if part of the statement
clearly had to be executed but is marked as unexecuted. These prob-
lems have been observed when strings are used in the if statement or
{...}. These problems have been seen with the Alpha cxx compiler.
Please report any instances of this so that the cause can be identified.

8.3 Javelina Python Libraries

The Javelina python libraries have no reported bugs.

8.4 Javelina GUI

The Javelina GUI has no reported bugs.

9 Javelina Open Source Project

The Javelina open source project [12] is hosted at http://javelina.tigris.org.
This is the source for the latest releases of Javelina and the most up-to-date
information. Submit all bug reports, bug fixes, and feature requests at this
site. There are also discussion lists where users can obtain help.

UNCLASSIFIED: LA-UR-05-7792 33

A LICENSE

10 Help!!

For additional help with Javelina, see the Javelina open source project [12]
at http://javelina.tigris.org.

A License

Copyright (c) 2005, The Regents of the University of California All rights
reserved.

Copyright 2004. The Regents of the University of California. This soft-
ware was produced under U.S. Government contract W-7405-ENG-36 for
Los Alamos National Laboratory (LANL), which is operated by the Univer-
sity of California for the U.S. Department of Energy. The U.S. Government
has rights to use, reproduce, and distribute this software. NEITHER THE
GOVERNMENT NOR THE UNIVERSITY MAKES ANY WARRANTY,
EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE
OF THIS SOFTWARE. If software is modified to produce derivative works,
such modified software should be clearly marked, so as not to confuse it with
the version available from LANL.

Additionally, redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright no-
tice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name of the University of California, LANL, the U.S. Gov-
ernment, nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY AND CON-
TRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

UNCLASSIFIED: LA-UR-05-7792 34

REFERENCES REFERENCES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTI-
TUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGE.

Developed by David R. “Chip” Kent IV at Los Alamos National Labo-
ratory.

Javelina is unclassified and released under LA-CC-04-128.

References

[1] Atom, http://h30097.www3.hp.com/dcpi/part1/sld011.htm

[2] SHA-1, http://www.itl.nist.gov/fipspubs/fip180-1.htm

[3] Dyninst, http://www.dyninst.org

[4] GCC, http://gcc.gnu.org

[5] Open-MPI, http://www.open-mpi.org

[6] LA-MPI, http://public.lanl.gov/lampi/

[7] MPICH, http://www-unix.mcs.anl.gov/mpi/mpich/

[8] Python, http://www.python.org

[9] Scons, http://www.scons.org

[10] Boost, http://www.boost.org

[11] TCL, http://tcl.sourceforge.net/

[12] Javelina Open Source Site, http://javelina.tigris.org

UNCLASSIFIED: LA-UR-05-7792 35

